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Abstract

Air inclusions in any preform for microstructured optical fibres can greatly reduce conductive heat transfer. Modelling the heat trans-
fer therefore requires that radiation be properly included. In this paper we use the Rosseland approximation to consider radiative heat
transfer within the matrix material and present a method of including radiative heat transfer across the air inclusions for the first time.
We apply the thermal model to the transient heating process of a silica preform with a hole structure that restricts conduction. The resul-
tant heat transfer model yields realistic heating times.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Microstructured optical fibres (MOFs), also known as
photonic crystal fibres or holey fibres, achieve their optical
properties through a pattern of tiny holes that run the
entire length of the fibre [1]. Unlike conventional optical
fibres, which rely on refractive index contrasts produced
by chemical doping or the use of more than one material,
MOFs are usually made from a single material, either silica
[1,2] or polymer [3]. The development of MOFs has
aroused enormous interest because of their ability to pro-
duce a wide range of optical effects. Some of these, such
as photonic bandgap guidance, which allows light to be
guided in air, cannot be obtained using conventional fibres.
In other cases, the use of a microstructure allows unusually
strong effects to be produced, affecting for example the
fibre’s polarisation or dispersion properties.
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The wide range of optical properties in such fibres is
obtained by the use of different microstructures, and in
some MOFs the optical performance is critically dependent
on the exact geometry of particular features in the design.
Fig. 1 shows an example of a typical MOF.

Like other optical fibres, MOFs are produced from a
shorter, fatter version of the final fibre called a ‘preform’.
The preform is drawn to fibre by heating and applying ten-
sion. This process has been described elsewhere [4,5] and
usually involves one or two draw stages to obtain fibre
structures of the required size. In silica, the preforms are
usually 2–3 cm in diameter, while in polymer they can be
up to 8 cm in diameter. Fibre diameters typically fall in
the range 100–500 lm, with silica MOFs often being drawn
to a ‘standard’ 125 lm.

The relationship between the hole structure and the
optical properties means that the fabrication process poses
challenges, as holes can change both their size and shape
during the draw process. Initially, the complexity of this
problem meant that it was approached empirically. More
recent work however [6–8] has begun to give insights into
the underlying mechanisms of hole deformation, and has
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Nomenclature

c speed of light in a vacuum (2.9 � 108 m/s)
cp specific thermal capacity (J/kg K)
ds length of a differential segment
du azimuthal angle
F radiative view factor
h Planck’s constant (6.626 � 10�34 J s)
H incident radiation (W/m2)
kB Boltzmann’s constant (1.3807 � 10�23 J/K)
J total radiated power (or radiosity) (W/m2)
n refractive index
n normal unit vector to a surface
N number of surfaces in enclosure
Q heat flux at a surface (W/m2)
q radiative heat flux vector within the matrix

material (W/m2)
r radial coordinate
R radius (m)
t time (s)
ts time when the centre of a preform reaches Ts

te time when the centre of a preform reaches ‘near
equilibrium’

T temperature (K)
Ts softening temperature of the preform material

(K)
x, y coordinates

Greek symbols

a absorption coefficient (m�1)
am Rosseland mean absorption coefficient (m�1)

d optical thickness
e hemispherical emissivity
ee effective emissivity
jc thermal conductivity (W/m K)
jr radiative ‘conductivity’ (W/m K)
k free space wavelength (lm)
q reflectivity
qo density (kg/m3)
r0 Stefan–Boltzmann constant (5.68 � 10�8 W/

m2K4)

Subscripts

c quality related to conductive heat transfer
con quality related to convective heat transfer
h hole
i, j surface i or j

i � j from surface i to surface j

m mean value
max maximum value
min minimum value
p preform surface
w furnace wall
rad or r quality related to radiative heat transfer
k spectrally (wavelength) dependent
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shown excellent qualitative agreement with experiment.
The ultimate aim of the present research is to be able to
‘reverse engineer’ the preform and its drawing conditions
so as to produce the desired microstructure in the fibre.
This however requires a more quantitative understanding
of the heat transfer processes, as the temperature profile
Fig. 1. Cross-section of a typical MOF (Image courtesy of Richard Lwin).
in the preform also determines the profile of key rheologi-
cal parameters such as viscosity.

Heat transfer in the transient heating process of MOF
preforms for drawing optical fibres is complex because it
involves structures made from semitransparent materials
heated at elevated temperatures. Like many engineering
problems, combined conduction, convection, radiation heat
transfer [9] has to be considered. To solve the coupled heat
transfer problems, great efforts have been made in develop-
ing sophistic numerical methods, including finite volume
methods [10–12], finite element methods [13], boundary ele-
ment method [14], and discrete transfer method [15].

There have been previous studies of heat transfer in
MOF preforms and drawing optical fibres. In considering
the heat transfer inside preforms or solid fibres, the matrix
material was usually assumed to be optically thick [16] so
that the Rosseland or diffusion approximation can be used
[17–21]. In studying the heat transfer in MOF preforms,
Lyytikäinen et al. [20] considered radiative transfer within
the matrix material while later work [22] looked at the
impact of hole structure on the time dependent heating
behaviour of a polymer preform. Deflandre [23] investi-
gated thermal effects on the periodicity and hole shape
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under steady-state drawing conditions. However, in all of
these studies, either a constant absorption coefficient or a
mean absorption coefficient evaluated at a particular tem-
perature was used over the entire temperature range in
the transient heating process, and none of these studies
considered radiative heat transfer across the holes. As ther-
mal radiation is the principal heat transfer mechanism
within the holes by the fact that no conduction exists in
the air inside, and neglecting it might be expected to pro-
duce substantially inaccurate results.

In this work we propose a method for evaluating the
radiative heat transfer across the holes located at arbitrary
positions in a microstructured preform, and improve the
radiation model used within the optically thick matrix
material. We then apply this model to the transient heating
process of a silica preform whose hole structure is such as
to severely limit thermal conduction, and show that includ-
ing radiative heat transfer gives realistic heating times.

2. Thermal modelling

In the heating and drawing process of MOFs, a cylindri-
cal preform (initially at room temperature) of initial radius
Rp is fed into a cylindrical furnace at a relatively slow, con-
stant speed, and heated to a temperature above the softening
point Ts of the material. Fibres are continuously drawn from
the end of the softened preform by applying an appropriate
level of tension. In this work we consider only the initial
transient heating process to the draw temperature, before
the fibre drawing begins. This process can be regarded as
the thermal transport system between two infinitely long
concentric cylinders (the preform and furnace), with the pre-
form having an arrangement of longitudinal holes. The tran-
sient energy equation for this simplified system is thus:

q0cp
oT
ot
¼ �r � ð�jcrT þ qÞ ð1Þ

where T is temperature, t is time, q0 is the mass density, cp

is specific thermal capacity, jc is thermal conductivity and
q denotes the radiative heat flux. The boundary conditions
are oT

or ¼ 0 at r = 0, and jcn � $T = Qcon + Qrad on the sur-
faces of the preform and the holes involved. Here, n is the
normal vector of the surfaces, and Qcon and Qrad are
respectively the convective and radiative heat fluxes.

In the following sub-sections, we will consider separately
the effect of radiation in both the matrix material and
across the preform holes. In both cases, we find ways
express the radiation in terms of the temperature profiles.

2.1. Radiative heat transfer within the matrix material

The effect of radiation incident on the preform depends
on the transparency of the material. Clearly, if the material
is completely transparent it will pass through the material
and there will be no radiative heat transfer. Similarly, if
the material is completely opaque, the radiation will be
absorbed at the surface and the subsequent heat transfer
into the preform will be by conduction alone. An impor-
tant intermediate case is therefore when the material is
‘optically thick’ allowing for the short-range transmission
of thermal radiation, that is, when the mean optical thick-
ness of the matrix material dm = 2amRp� 1. Here, am is the
mean absorption coefficient of the preform material. In this
case, as addressed by Sparrow and Cess [24], the photon
mean free path (i.e., 1/am) is much smaller than the charac-
teristic dimension (i.e., Rp). As a result, every element of
the matrix material is directly affected only by it neigh-
bours, and the radiation transfer within the matrix material
becomes a diffusion process, and one can use the Rosseland
diffusion equation [16] rather than solving the radiative
transfer equations (RTE) to obtain the heat flux due to
radiation. In this approach, one begins with the formula
of the spectral distribution ek for black-body radiation into
a medium with a constant refractive index n. This can be
written in the factorised form

ek df ¼ ðn2r0T 4Þ 15

p4

f3

ef � 1

� �
df ð2Þ

where

f ¼ hm
kBT
¼ hc

kkBT
ð3Þ

is the dimensionless ratio of photon energy to thermal en-
ergy. In Eq. (2) the first factor contains the important phys-
ical quantities while the second is normalised such that its
integral over the entire spectrum is unity. The associated
Rosseland equation

dq ¼ � 4

3ak
rðek dfÞ ð4Þ

shows that the heat flux q per unit spectral range df is
proportional to the gradient of the spectral distribution
and inversely proportional to the absorption ak. In a homo-
geneous, unstructured material the only source of spatial
variation is the temperature, so one can rewrite the Rosse-
land equation as

dq ¼ � 4

3ak
rT

o

oT
ðek dfÞ ð5Þ

The total heat flux is then obtained by integrating over the
relevant parts of the spectrum:

q ¼ � 4

3
rT

o

oT

Z
ek df
ak
¼ �jrrT ð6Þ

Thus, we obtain the most important result of the Rosseland
approximation: the radiative heat flux behaves like thermal
conduction and is proportional to the local temperature
gradient. An effective radiative ‘conductivity’ may then be
defined as

jr ¼
4

3

o

oT

Z
ek df
ak

ð7Þ

In general, the integral in Eq. (7) must be evaluated numer-
ically. One special case that can be solved analytically is
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when the absorption is a constant over the entire spectral
range and we can exploit the normalisation of Eq. (2) to
obtain

jr ¼
4

3a
o

oT

Z
ek df ¼ 16

3a
n2r0T 3 ð8Þ

This reveals the familiar cubic dependence on temperature.
For many materials radiative absorption takes place in

distinct spectral bands with different levels of absorption
in each. The previous integral must therefore be calculated
separately for each band. This means that the effective
Rosseland conductivity will have a more complicated form
than that shown in Eq. (7)

jr ¼
4

3

X
i

o

oT

Z
band;i

ek df
ak
¼ 16

3am
n2r0T 3 ð9Þ

where am is the Rosseland mean absorption coefficient.
From Eq. (9), am can be cast as

1

am
¼ 1

4n2r0T 3

X
i

o

oT

Z
band;i

ek df
ak

ð10Þ

or after some algebra as

1

am
¼ 15

4p4

X
i

Z
band;i

f4ef

ðef � 1Þ2
df
ak
: ð11Þ

This approach is sometimes referred to in the literature as
the ‘‘gray bands” model. Unfortunately these integrals can-
not be evaluated in closed form, and a mean absorption
coefficient must be computed numerically. (See Eq. (22) be-
low for the actual parameters used in our simulations for
silica preforms.)

The gray bands approximation is not, however, the only
modification required to apply the Rosseland approxima-
tion. From Eqs. (3) and (11), clearly, am is a function of
wavelength- temperature product. As the temperature of
a black-body increases, the maximum hemispherical radia-
tion emissive power shifts to shorter wavelengths, so that
am must be evaluated numerically for each temperature in
the temperature range determined by the intensity of black-
body hemispherical emissive power. Accounting for this is
particularly significant in heating silica preforms because at
the draw temperature (2000 K) the emission peak falls in a
wavelength region where silica is highly transparent. At
this temperature radiation clearly does not contribute to
the heat transfer, and the Rosseland approximation is
invalid.

The point at which the Rosseland approximation
becomes inappropriate can be estimated using Wien’s dis-
placement law, which relates the peak of the (free-space)
wavelength to the temperature:

kpeakT ¼ 2898 lm K ð12Þ

More than 75% of the emissive power is concentrated in
the following range of wavelength-temperature products
(see, for example, Figs. 2–7 in [16]):

1448 lm K 6 kT 6 6149 lm K ð13Þ
If kmin is the minimum wavelength and kmax is the min-
imum wavelength for which the preform material can be
considered optically thick, then temperature range over
which the Rosseland approximation appropriate is

1448 lm K

kmax

6 T 6
6149 lm K

kmin

ð14Þ

Therefore, for a given wavelength band, the working
range of the Rosseland model is restricted in the range gi-
ven in Eq. (14) (Note, if the value below the room temper-
ature, the room temperature 298 K will be used). As a
result, a temperature-dependent, thus, time-dependent,
mean absorption coefficient is numerically evaluated based
on Eq. (11) point-wisely inside material. Outside this tem-
perature range, it is assumed that the matrix material is
either transparent (at a high temperature and low wave-
length) or opaque (at a high wavelength am =1), and
accordingly, no radiation is considered inside the matrix
material.

2.2. Radiative heat transfer across holes within the preform

During the transient heating process of a microstruc-
tured preform, the temperature around a hole surface
varies with time and position, and so radiative heat trans-
fer is expected between different parts of the hole surface.
Simply imposing a zero heat flux condition on the hole
surface [20,22,23] is a poor assumption that becomes
worse as the number of holes increases, or their spacing
decreases.

Using the net-radiation method for an enclosure [16], it
is possible to derive an expression for the relationship
between the localised heat flux due to radiative heat trans-
fer and the temperature around the perimeter of an off-axis
air-hole. For simplicity, we consider only circular holes in
this work, although the method can clearly be generalised
for holes of any shape.

With the net-radiation method, the perimeter of each
off-axial hole is divided into N differential segments of
length dsi = Rhdui (1 6 i 6 N) where u is the azimuthal
angle around the hole and Rh is the radius of the hole, as
shown in Fig. 2. Each segment is sufficiently short that it
can be treated as an isothermal straight line. Assume each
of the segments be a gray, diffuse radiator with a constant
hemispherical total emissivity ei, absorption ai and reflec-
tivity qi related by ei = ai = 1 � qi. The heat loss Q at the
surface of the ith segment is the difference between thermal
emission and absorption

Qi ¼ eir0T 4
i � aiH i 1 6 i 6 N : ð15Þ

Similarly, the radiated power, or radiosity J, is the sum of
the emission and reflection

J i ¼ ejr0T 4
i þ qiH i ð16Þ

Here Ti is the local temperature and Hi is radiation inci-
dent on the surface from all the other segments around
the hole:



Fig. 3. The computational domain and mesh structure used in the
transient heat transfer modelling.
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Fig. 2. The circumference of the hole is divided into N segments of length
ds each of which emit, as well as reflecting and absorbing radiation from
the other segments. Calculating the interaction between the segments
requires a pair-wise view factor. Here, the solid line shows the line of sight
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H i ¼
XN

j¼1

J jF i�j ð17Þ

where Fi�j is the view factor and the subscript i denotes the
emitting element while j denotes the incident element.

Combining Eqs. (15) and (17) yields

Qi ¼ ei

XN

j¼1

ðr0T 4
i � J jÞF i�j ð18Þ

Thus, to determine the net heat flux Qi it is only necessary
to determine Ji

J i ¼ eir0T 4
i þ ð1� eiÞ

XN

j¼1

J jF i�j 1 6 i 6 N ð19Þ

The view factor between two segments at angular positions
ui and uj is related to the projection of the normal to the
segment along the line of sight between the segments (see
Fig. 2). Some simple trigonometry gives

cosðUÞ ¼ sin
ui � uj

2

� �
ð20Þ

It is easy to see that for diametrically opposite segments
this factor is unity and decreases as the two segments
become relatively inclined. The full view factor Fi�j is
obtained by considering two infinitely long strips having
parallel generating lines which introduces an additional
factor of a half (see [16] for example)

F i�j ¼
1

2
sin

ui � uj

2

� �
ð21Þ

With known view factors and temperatures, Eq. (19) can be
readily solved numerically by matrix inversion and only
needs to be inverted once. It is also worth noting that the
size of the hole does not explicitly appear in the
relationship.
3. Numerical analysis

The importance of air holes within a preform on its tran-
sient heating depends on the structure used. Although air
acts as a barrier to conduction, the degree to which it alters
the radial temperature profile and changes heating times is
often not intuitive. Indeed even without radiative transfer
across the holes, preforms with very high air fractions
may be heated more rapidly than solid preforms due to
the reduced amount of material present [22], particularly
for those hole structures where there are no hole-rings
formed.

In order to test our heat transfer model, we chose a sym-
metric 8-hole structure where the holes form an almost
complete ‘air ring’ (see Fig. 3 – only one quarter of the
symmetric cross-section is shown). This structure greatly
reduces conductive heat transfer into the central part of
the preform, and therefore would be expected to provide
a graphic demonstration of the impact of radiative heating
across the holes.

The preform radius used was Rp = 12.5 mm, with a hole
radius Rh = 2.2 mm. The holes were placed symmetrically
at a radial distance of 6 mm. We used silica as the matrix
material, as it is the most commonly used material for
MOFs. The heating conditions and material properties
used are given in Table 1. The simulations were carried
out using a commercial computational fluid dynamics
package, Fluent [25].

As described in Section 2.1, the absorption of silica var-
ies with wavelength and can be divided into bands over
which the absorption is taken to be constant. The band
model given by Myers [19] at 298 K defines the absorption
coefficients as follows:



Table 1
Material properties and heating conditions used in the numerical
simulations

Parameter Silica value Units

q0 2200 kg/m3

jc 2.68 W/m K
cp 1345 J/kg K
Ts 1900 K
Tw 2000 K
ee Eq. (24) –
ep Eq. (25) –
n 1.42 –

am
Eqs: ð11Þ and ð22Þ 298 K 6 T 6 1443 K
1 T > 1443 K

�
1/m

1574 S.-C. Xue et al. / International Journal of Heat and Mass Transfer 50 (2007) 1569–1576
ak ¼

0 k < 3 lm

400 m�1 3 lm 6 k 6 4:8 lm

15; 000 m�1 4:8 lm < k 6 8 lm

0 k > 8 lm

8>>>>>><
>>>>>>:

ð22Þ

The temperature range in which the silica preform is opti-
cally thick is 298 6 T (K) 6 1443 [see Eq. (14)], which has
been clearly demonstrated in Fig. 4 where the calculated
temperature-dependent mean absorption coefficient am,
the effective radiative ‘conductivity’ jr (see Eq. (9)) and
the mean optical thickness dm of the silica preform in the
temperature range are depicted. As seen, dm� 1, and jr

is roughly proportional to the temperature in this temper-
ature range, but compared to the material thermal conduc-
tivity jc, it is relatively smaller, particularly at a lower
temperature, which indicates that radiative heat transfer in-
side the matrix material is not the dominant mode in the
transient heating process of microstructured silica preform.
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Fig. 4. Calculated temperature-dependent mean absorption coefficient am,
(solid line with symbols), the effective radiative ‘conductivity’ jr (solid line)
and the mean optical thickness dm (dashed line) of the silica preform of
radius Rp = 12.5 mm in the temperature range where it is optically thick.
The external heat flux due to radiative transfer is

Qrad ¼ �eer0½T 4 � T 4
w� ð23Þ

where the effective emissivity ee is given by Christiansen’s
equation

ee ¼
1

1

ep

þ Rp

Rw

� �2
1

ew

� 1

� � ð24Þ

The furnace wall is assumed to be gray and diffuse with a
hemispherical total emissivity ew of 0.75 [16] at a represen-
tative temperature of 2000 K. Over the wavelength range
0.1 lm < k < 100 lm, silica is treated as a diffuse spectral
surface, where the value of the hemispherical spectral emis-
sivity ep for a glass cylinder has been estimated by Sayles
and Caswell [26] as

ep ¼ 0:885ð1� e�dkÞ ð25Þ
where dk = 2akRp is the spectrally dependent optical thick-
ness of the silica preform.

Only one quarter of the cross-section was required due
to symmetry, and the computational domain (see Fig. 3)
was discretised as 4650 quadrilateral control volumes. To
ensure each cell face is nearly straight for accurate calcula-
tions of the view factors, very fine meshes were used around
the holes (with a minimum dimensionless size of 0.0018 rel-
ative to the hole perimeter).

In order to quantitatively compare various preform heat-
ing scenarios, we defined the following several parameters.
The softening time, ts, is the time when the centre of the pre-
form reaches the softening temperature of silica Ts. The
time taken to reach near equilibrium, te, is defined here to
be when the centre temperature is within 0.5% of the exter-
nal driving temperature. Finally, the percentage radial tem-
perature difference across the preform at ts is quantified by

DT ¼ T p;max � T s

T s

� �
� 100% ð26Þ
Fig. 5. The temperature profile (contour in K) without radiative heat
transfer across the hole structure. The profile is shown at time ts = 4 min.



Fig. 6. The temperature profile (contour in K) with radiative heat transfer
across the hole structure. The profile is shown at time ts = 1.48 min.

Table 2
Heating efficiency and temperature uniformity in solid and structured
preforms

Preform ts te DT %

Solid 1 1.68 4.27
8-hole ring structure (no radiation across holes) 1.82 3.26 5.15
8-hole ring structure (radiation across holes) 0.67 1.08 4.24

Times have been scaled relative to ts for the solid preform.
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Note that Tp,max is the maximum temperature of the pre-
form surface at ts.

Figs. 5 and 6 show temperature profiles (contours in K)
at ts, for cases with and without the inclusion of radiative
transfer across the holes. In both cases, conduction and
radiative transfer (the latter included via the Rosseland
approximation) through the silica matrix have been
included.

Fig. 5 shows that the air holes present a significant bar-
rier to conductive heat transfer with the thinnest points in
the bridges effectively acting as point sources of heat. By
contrast, when radiative transfer across the holes is
included (Fig. 6), the temperature contours indicate an
insignificant perturbation due to the presence of the holes.
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Fig. 7. The evolution with time of the maximum temperature on the
preform surface (solid lines) and the temperature at the preform centre
(dashed lines) for a solid preform and a 8-hole ring preform with and
without radiative heat transfer across the holes.
When the centre of the preform reaches the silica softening
point Ts, the difference in temperature between the surface
and centre is some 17 K lower than when radiative transfer
across the holes is not included.

The evolution with time of the maximum temperature at
the preform surface and at the preform centre is shown in
Fig. 7 where, for reference, the results for a solid preform
of the same dimensions have been included. The surface
temperatures in the two structured cases increase some-
what more rapidly than for the solid preform case, a result
that is simply due to there being less material to heat. As
expected, the centre of the structured preform with no
radiative transfer across the holes heats most slowly and
exhibits the largest radial temperature difference. When
radiation across the holes is included, the preform heats
more quickly than the solid preform, again due to the
reduced amount of material present. The uniformity of
heating in this latter case, is marginally better than for a
solid preform.

A quantitative comparison of all three cases is shown in
Table 2 where all the characterizing times have been scaled
by ts of the corresponding solid (unstructured) preform.
4. Conclusions

The results clearly demonstrate the need to include ther-
mal radiation across the hole structure when modelling
heat transfer within an MOF preform. In addition they
indicate that at high air fractions heating is faster and more
uniform than for a corresponding solid preforms despite
the reduced transfer area for conductive heat transfer. This
latter result is particularly important in the case of pho-
tonic band-gap fibres which require a very high (at least
90%) air fraction. While thermal radiation is the norm
when heating preforms for silica MOFs, the authors are
unaware of any modelling work that includes radiative
transfer across the hole structure. Certainly this heat trans-
fer mode has not been considered when modelling the heat-
ing of non-silica preforms. Our results would indicate that
this is a serious omission in such transient thermal
modelling.

Preform heating is very rapid in the cases we considered,
with thermal equilibrium being essentially reached in less
than 4 min. It is worth noting that in practice much longer
heating times (of the order 20–30 min) are used, with a
ramped furnace temperature to reduce thermal shock and
minimise the risk of the preform shattering. An additional
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influence here is that silica draw towers continuously flush
the furnace with inert gas (at room temperature) to prevent
oxidation of the graphite furnace elements and remove car-
bonaceous debris [27]. This forced convection has not been
included in our thermal model. The surface cooling that it
causes would have the effect of increasing the heating times
and reducing the radial temperature gradient. The impact
of external convective heat transfer on the heating (and
drawing to fibre) of polymer preforms has been considered
previously [6,7].

Experimental confirmation of this thermal modelling is
problematic for silica preforms due to the high tempera-
tures used. While radiative heat transfer is less important
in polymer preforms because of the lower operating tem-
perature, it is far easier to obtain transient heating data
for such systems using a set of embedded thermocouples.
Experimental and modelling results from the transient
heating of polymer preforms will be compared in a later
paper.
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